早在2020年,索尼AI决定挑战一项相当大胆的任务:打造一个能够真正击败世界上最好的Gran Turismo车手的AI。不仅仅是与他们竞争,而是击败他们。到2021年,他们成功了。但这一突破实际上只是索尼在游戏领域更大AI愿景的开端。
索尼将自己定位于游戏AI革命的前沿。他们的方法有趣之处在于,他们并不是要取代人类的创造力,他们对此非常坚持。相反,他们正在多个领域利用机器学习:像人类一样学习的赛车代理、AI驱动的升级技术、下一代主机架构和智能游戏开发工具。让我们深入探讨索尼游戏AI究竟是什么,这项技术如何运作,以及它对开发者和玩家可能意味着什么。
What is Sony Gaming AI?
Sony Gaming AI is a comprehensive ecosystem of AI technologies meant to enhance every aspect of interactive entertainment. Unlike traditional rule-based game AI that follows predetermined scripts, Sony’s approach uses something called deep reinforcement learning to create adaptive AI agents that actually learn through experience, much like humans do.
At its core, Sony’s AI philosophy is straightforward: AI should augment creativity, not replace it. That principle guides everything from how their 50,000+ employees across 210 teams use the company’s Enterprise LLM platform to how AI gets integrated into PlayStation consoles and games.
公司与专注于法律、隐私和伦理的团队合作,建立AI使用的明确指南。他们特别关注防止未经授权的内容复制。Sony还通过建立能够检测被盗或不当使用内容的系统来保护创作者的作品。
索尼的AI方法:超越基于规则的系统
Traditional game AI operates on rigid rules: “If player does X, then NPC does Y.” It’s predictable. Sony’s transforming Game-AI by using deep reinforcement learning to train AI agents in gaming ecosystems. This technology enables developers to design and deliver richer experiences that can adapt, learn, and evolve.
How reinforcement learning works in games
强化学习(RL)代理通过在环境中反复练习来学习任务。可以把它想象成教人开车:他们反复练习,获得对其行为的反馈,并通过试错逐渐改进。
Sony AI的方法奖励积极行为并惩罚不良行为,这使得AI能够通过迭代训练不断改进。现代视频游戏需要精确的控制和创造性的解决方案,为这些代理提供了理想的训练场。为游戏开发的创新也可能适用于其他现实世界领域。

Gran Turismo Sophy: The Breakthrough AI Racing Agent
Racing AI explained
Gran Turismo Sophy(GT Sophy)代表了索尼最著名的AI成就。一个自主赛车代理,不仅与世界上最好的Gran Turismo车手竞争,而且在展示出极其人性化的赛车技艺的同时击败了他们。
It came out of a unique collaboration between Sony AI, Polyphony Digital, and Sony Interactive Entertainment. GT Sophy achieved what many thought was impossible: superhuman racing performance combined with genuine sportsmanship.
The achievement earned recognition as a cover article in Nature in February 2022. It also won Sony AI the 2022 ACM SIGAI Industry Award for Excellence in Artificial Intelligence.
How GT Sophy learns to race
GT Sophy以专业车手的方式学习赛车:通过广泛的练习。AI在每条赛道上驾驶数千次,与其他车辆比赛,以掌握正确的赛道行为和赛车技巧。
GT Sophy使用强化学习来发展直观的理解,而不是遵循预编程的赛车路线:
- Contemplates overtaking opportunities rather than just executing scripted maneuvers
- Exhibits restraint when aggressive moves might cause accidents
- Adapts racing lines based on opponent positioning and race conditions
- Balances competitive drive with clean racing practices learned through reinforcement
This adaptive strategy produces racing behavior that feels genuinely human rather than mechanical. GT Sophy doesn’t just follow the optimal path—it makes real-time strategic decisions based on how the race is evolving.

Emotional intelligence on the track
Perhaps GT Sophy’s most remarkable feature is its emotional dimension. The AI uses visual “emojis” displayed above its car to communicate emotional state during races:
- 在被撞或被超越时显示“悲伤”
- 在成功超车时显示“快乐”
- Audible chimes signal emotion changes
这反映了GT Sophy对赛车心理学和竞争动态的复杂理解。它帮助玩家将AI视为赛车对手而不仅仅是一个算法。
Benefits of GT Sophy for players
Flexible training partner
The March 2025 release of GT Sophy 2.1 transformed the AI from a superhuman opponent into customizable training partner. Players now have unprecedented control over their racing experience:
- Choose from 19 car models and tracks
- Select number of laps and racing conditions
- 使用升级和调校规格自定义GT Sophy的车辆
- Set tire and fuel consumption rates
- Adjust difficulty to match personal skill level
Enhanced racing skills
GT Sophy helps players advance their racing abilities by:
- 在任何技能水平上提供一致的、适应性的竞争
- Demonstrating proper racing etiquette and sportsmanship
- Creating opportunities to experiment with new strategies
- Offering challenging opponents that respond realistically to player tactics
Richer gaming experiences
GT Sophy展示了AI可以创造更具吸引力和动态的游戏玩法。与其让玩家快速学习如何利用的可预测对手,GT Sophy不断适应,使每场比赛都感觉新鲜和充满竞争。

The Technology Behind GT Sophy
多代理学习
Almost all video games involve dealing with other agents or humans, and the rules of engagement often aren’t formalized. Without well-specified cost functions or access to all possible behaviors, AI agents in games need to be more robust and tunable than in traditional AI domains.
GT Sophy同时与多个代理和人类玩家互动,学习在赛道上驾驭复杂的社交动态。由于几乎所有现实世界的领域都涉及多个代理,例如自动驾驶汽车和机器人,索尼为GT Sophy开发的多代理学习技术可以广泛应用于游戏之外的领域。
Scalable training infrastructure
Modern reinforcement learning and AI algorithms require massive compute and data resources. Sony AI developed a sophisticated engineering ecosystem that enables:
- 现代 RL 算法的大规模计算资源
- Rapid deployment of learning algorithms trained on video games at scale
- Trustworthy and repeatable RL processes for production environments
- Efficient training of AI agents across diverse gaming scenarios
该平台代表了多年来在构建专门为游戏 AI 训练设计的工程生态系统方面的研究,并继续发展以支持日益复杂的 AI 应用。

PlayStation Spectral Super Resolution (PSSR):AI驱动的升级技术
What is PSSR?
PlayStation Spectral Super Resolution(PSSR)是索尼的AI渲染技术,由PS5 Pro上的专用机器学习处理器提供支持。于2024年11月首次亮相,PSSR是首个在家用游戏机上实施的机器学习升级器,将以前仅限于高端PC游戏的技术带给主流观众。
Similar to NVIDIA’s DLSS (deep learning super sampling) technology, PSSR taps into neural networks trained with high-resolution images. Machine learning teaches the network how to add in and infer details about images, creating sharp visuals from lower-resolution renders.
PSSR explained
PSSR允许游戏以较低分辨率(如1080p全高清或1440p四高清)渲染,然后使用AI算法确定这些图像在更高分辨率(如2160p或4K)下的外观。
图像以较低分辨率渲染,但给人的印象是它们在更高分辨率下运行。这大大减少了图形处理单元(GPU)需要做的工作,从而提高了图形性能和帧率,同时产生超越原生渲染能力的清晰图像。
Insomniac Games的Mike Fitzgerald解释道:“我们可以以较低的分辨率渲染,将其提升到完整的4K,并从图像中获得大量额外细节。”

How PSSR learns and improves
What distinguishes PSSR from traditional upscaling is its learning capability. Travis McIntosh from Naughty Dog highlights this: “[PSSR] produces just a way better result than previous upscalers because it can be trained not only on our game but on plenty of other games, and it learns and it improves at each iteration.”
PSSR背后的神经网络在多个游戏中进行训练,而不是针对单个游戏进行优化。这种跨游戏学习使PSSR能够:
- Fix graphical errors and artifacting automatically
- Improve challenging elements like foliage rendering through specialized training
- Deliver better results over time as more developers implement the technology
- Adapt to various art styles and visual approaches
随着神经网络的持续学习,驱动技术的算法得到改进,惠及整合PSSR的开发者和体验增强图像的玩家。
Benefits of PSSR for Gamers and developers
Faster frame rates
以更高每秒帧数(fps)运行的游戏通常表现更好更快,尽管所需的FPS因游戏需求而异。大多数游戏在至少30 fps下表现理想,而动作丰富的游戏通常以60 fps或更高为目标。
PSSR通过在要求较低的分辨率下渲染来大幅加速帧率,同时实现4K视觉质量,释放GPU资源以获得更高性能。
Enhanced images
在更高fps下运行游戏可能会影响视觉效果,导致卡顿或滞后。PSSR有助于抵消这一点,提供增强和更清晰的图像质量,类似于在更高原生分辨率下的预期。
例如,PSSR提供了2160p(4K)图像的额外像素和视觉输出,而实际上以较低功率的1080p分辨率渲染帧,保持视觉保真度而不增加性能成本。
Improved performance
在更高设置下运行的游戏可能会显著消耗显卡并影响性能。性能因GPU是否运行光线追踪、所玩的特定游戏以及硬件配置而异。
PSSR helps improve system performance even when running at higher settings by efficiently using machine learning processors to deliver dramatically better results than previous console upscaling methods.
PSSR vs. competing technologies
Digital Foundry conducted extensive testing comparing PSSR against competing upscaling technologies using Ratchet & Clank: Rift Apart, matching resolutions precisely to ensure accurate comparison between PSSR, AMD FSR 3.1, and NVIDIA DLSS 3.7.
Results:
- PSSR significantly outperforms traditional console upscaling
- Approaches DLSS quality in many scenarios
- Particularly strong with complex visual elements and edge detail
对于主机玩家来说,PSSR代表了视觉质量的代际飞跃,而无需成比例地增加GPU功率,使以前仅限于PC玩家的昂贵显卡技术普及化。
Project Amethyst: The Future of PlayStation Gaming
索尼和AMD的下一代合作
项目Amethyst代表了索尼和AMD之间的重要游戏技术合作,旨在定义PlayStation 6及以后的图形架构。开发始于2023年,当时PS5 Pro已基本完成,明确目标是利用AI和机器学习来改善游戏视觉效果和性能。
The codename Amethyst combines PlayStation blue with AMD red, creating purple—a symbol of their unified vision for gaming’s future.
Mark Cerny对机器学习游戏的愿景
Mark Cerny, lead architect for PS5 and PS5 Pro, states: “Machine learning-based processing is the future.” The goal is “fewer pixels, prettier pixels coupled with machine learning libraries to increase resolution or add frames or assist in various ways with ray tracing.”
这代表了游戏硬件哲学的根本转变,优先考虑智能处理而不是蛮力计算。
Three Pillars of Project Amethyst
1. 神经阵列(性能)
神经阵列代表了一组计算单元,连接在一起以作为一个集中的AI引擎运行。它们被设计为比传统GPU设计更高效地处理大型机器学习工作负载,支持下一代神经渲染,具有专用硬件用于AI升级、帧生成和光线追踪增强,减少标准GPU核心的计算负担。
2. Radiance Cores(沉浸感)
专为高性能实时光线追踪和路径追踪设计的专用光线遍历硬件。Radiance Cores将密集的光线追踪任务从着色器核心中卸载,使其能够处理其他场景元素,同时提供更高的fps和沉浸式视觉效果。这使得光线追踪和反射的计算在主机上成为可能,将以前仅限于昂贵PC设置的视觉质量带入主流游戏。
3. 通用压缩(效率)
A compression system that evaluates and compresses all available data within the GPU, not just textures. This dramatically reduces memory bandwidth usage, enabling new performance levels with greater efficiency. It addresses a critical bottleneck in modern GPU design.
Timeline and availability
AMD的Jack Huynh透露,他们在RDNA 5上共同设计的机器学习加速硬件直接来自索尼的合作。这项技术将出现在:
- RDNA 5显卡:AMD下一代GPU的首次公开确认
- 2026-2027发布窗口:下一代游戏机的预期时间框架
- 跨平台优势:技术同时出现在PlayStation 6和AMD Radeon显卡中
FSR Redstone: Shared AI upscaling innovation
索尼和AMD共同开发了一种新的AI升级算法,作为AMD的FSR Redstone的基础,在2025年Computex上宣布。该算法从卷积神经网络(CNN)转向Transformer模型架构,旨在创建比当前代技术更清晰的升级图像。
Mark Cerny强调互操作性:“算法将有FSR的实现和Spectral的实现……但事实是它们将非常接近,因为我们希望游戏开发者能够实现互操作性。”
这种方法使开发者受益,他们可以在PC和游戏机平台上实现类似的AI升级,而无需额外的工作量,同时玩家无论硬件如何都能享受一致的质量。
Frame generation coming to consoles
Project Amethyst’s next phase includes machine learning-based virtual frame generation—technology currently available on PC coming to PS5 Pro and future consoles. AI creates entirely new frames that get inserted between rendered frames, dramatically increasing frame rates without proportional GPU load.
Cerny在此实施中强调玩家选择:“我们可以通过降低分辨率渲染和更积极的超级分辨率来支持高帧率。我们也可以通过使用帧生成来支持高帧率。一旦有了这个选择,索尼可以更多地了解玩家想要什么。”
游戏开发中的AI:Sony的内部工具
AI 驱动的质量保证
索尼开创了基于机器学习的游戏测试,显著提高了QA效率和准确性,解决了随着游戏变得更大更复杂而对测试成本的日益关注。
Dual agent QA system
Sony developed two complementary AI agents for automated testing:
Replay Agent excels at replicating exact button combinations. It can navigate in-game UI and PS5 hardware menus, move characters from spawn points to level transitions, and test scenarios requiring perfect consistency.
Imitation Agent introduces variability reflecting real-world gameplay. It reproduces human-like play patterns with natural variance, uses machine learning models trained on human gameplay data, and adapts to dynamic game elements like enemy AI and camera control.
案例研究:《Astro's Playroom》
索尼通过《Astro's Playroom》的开发展示了他们的AI QA系统。人类测试者每个部分玩了10-20次以创建代表性样本。机器学习模型从这些游戏数据中学习,之后AI代理自主测试游戏部分。
Benefits achieved:
- Significantly reduced testing time in many scenarios
- Earlier bug detection throughout the development cycle
- Improved overall game quality at release
Limitations:
- Some games require extensive training data for effective testing
- Changes in game parameters necessitate new ML models
- System still requires human oversight
人类等效游戏自动化
在CEDEC 2024上,索尼展示了能够在PS5上实现自主游戏的AI技术,复制人类玩家的条件。该系统仅使用屏幕信息,结合模仿学习、控制器操作记录/重放和图像识别,并根据视觉提示切换模型。
这自动化了在最终用户条件下的 PS5 系统软件功能测试,降低了 QA 成本,并在开发早期识别缺陷——这在测试需求随着游戏复杂性增长的情况下尤为重要。
Additional AI Innovations
Predictive AI: Anticipating player actions
Sony filed a patent revealing AI capable of predicting players’ next button press before it happens. The technology uses cameras to monitor player movements during gameplay, with AI learning to recognize patterns and predict upcoming inputs based on physical movements.
Potential benefits:
- Eliminates input lag by anticipating actions before execution
- 通过毫秒级的时机改进提供竞争优势
- Seamlessly handles internet disruptions by automatically completing interrupted commands
预测辅助系统建议未来PlayStation游戏机中的专用AI处理器(神经处理单元),可能实现加速光线追踪、改进的性能模式和在游戏过程中自适应提供的实时战略提示。
AI 驱动的 NPC:互动 Aloy 原型
Sony’s Advanced Technology Group created an AI-powered version of Aloy from Horizon Forbidden West that demonstrates conversational AI in gaming. The prototype combines OpenAI Whisper (speech-to-text), GPT-4 and Llama 3 (dialogue and decisions), Sony’s Voice Synthesis system, and Sony’s Mockingbird technology (audio-to-facial animation).
The demonstration showcased Aloy responding to player voice prompts with AI-generated voice and realistic facial expressions, all tested on PS5 consoles with minimal performance impact. While it remains an internal prototype not confirmed for public release, it demonstrates possibilities for NPCs engaging in natural language conversations, characters adapting dialogue based on player history, and voice interactions replacing traditional dialogue trees.
Content protection and enhancement
索尼通过 AI 保护知识产权,系统检测内容是否被盗用或不当使用,并监控未经授权的复制。AI 应用还扩展到媒体增强,包括遗留内容恢复和 PS5 图像质量改进。

Supported Hardware and Future Integration
支持 PSSR 的游戏机
PSSR 可在 2024 年 11 月发布的 PlayStation 5 Pro 上使用。该技术利用集成到游戏机定制 GPU 架构中的专用机器学习处理器,实现所有实施该功能的游戏的 AI 升级。
Expected features in PlayStation 6
Mark Cerny的声明“基于机器学习的处理是未来”表明AI将在下一代游戏机中发挥重要作用:
AI原生架构:RDNA 5 GPU配备专用神经处理单元,Project Amethyst技术(神经阵列、辐射核心、通用压缩),以及从头开始为AI工作负载设计的硬件。
高级升级和帧生成:PSSR的演变伴随着改进的算法,AI生成的帧提升性能,以及通过机器学习的实时光线追踪增强。
开发者灵活性:支持包括ChatGPT(如果开发者选择)的各种AI模型,AMD FSR和PlayStation Spectral升级之间的互操作性,以及专注于最大化硬件能力的库。
玩家选择:在高帧率下选择激进的升级或帧生成,自定义AI助手功能,以及通过AI分析的自适应难度。
Games and Engines Supporting Sony AI Technologies
GT Sophy availability
Gran Turismo Sophy 2.1在Gran Turismo 7的自定义比赛模式中可用,为玩家提供前所未有的AI赛车体验定制和控制。
支持 PSSR 的游戏
不断扩展的游戏库支持 PS5 Pro 上的 PSSR。索尼的第一方工作室和第三方开发商的主要游戏都在实施这项技术。随着更多开发者采用 PSSR,神经网络不断学习和改进,惠及所有使用该升级系统的游戏。
Sony AI: Mission and Responsible AI Principles
Organizational mission
Sony AI was established in April 2020 to pursue research in AI and robotics within entertainment. Their mission statement captures the philosophy: “Unleash Human Imagination and Creativity with AI.”
索尼 AI 与全球的艺术家、创作者和制作者合作,专注于六大战略挑战,包括开发可信的传感平台、改变数字环境互动、以道德 AI 为先导,并发现 AI 激发前所未有的创造力的领域。
Core values
Sony has articulated clear principles governing AI development:
- AI 应该增强人类的创造力,而不是取代它
- Ethical considerations must guide AI implementation
- Privacy and legal compliance are essential
- 创作者的知识产权必须受到保护
- Transparency about AI benefits and limitations is necessary
Sony AI驱动的游戏愿景的未来
当索尼游戏AI技术首次开发时,每个应用程序都需要单独的训练和实施。现在,通过像PSSR和跨平台FSR Redstone合作这样的项目,索尼提供了更通用的AI网络,可以在多个游戏和平台上工作。
随着索尼AI技术背后的神经网络不断学习,驱动它们的算法也在改进。这为在游戏中实施这些技术的开发者和体验更快帧率、增强图像、更丰富AI互动以及更沉浸式游戏体验的玩家带来了好处。
索尼的全面AI战略将公司定位为跨多个维度的游戏创新领导者,从Gran Turismo Sophy等突破性成就到升级和质量保证的实际应用。公司的投资不仅代表了渐进的改进——它们标志着对游戏创作、玩法和体验的根本性重新想象。
从展示超人技能同时保持体育精神的AI赛车代理到提供4K视觉效果而无需4K渲染成本的升级技术,索尼正在构建一个AI驱动的游戏未来,平衡:
- 技术卓越:顶级AI实现推动边界
- 人类创造力:AI作为增强工具,而非替代品
- Ethical responsibility: Clear governance protecting creators and users
- Player enjoyment: Technology serving gameplay
下一代游戏不仅仅是更强大的硬件,而是更智能的硬件,它能够学习、适应并增强游戏体验的各个方面。随着技术延伸到2020年代末期以及定义未来主机架构的合作伙伴关系,索尼不仅参与了游戏的AI驱动未来;他们正在积极塑造它。
关于作者本文探讨了索尼在游戏中对人工智能的全面方法,研究了Gran Turismo Sophy、PlayStation Spectral Super Resolution和Project Amethyst等突破性技术,这些技术正在为下一代重新塑造互动娱乐。